
XML Schema
Lecture 6 (A)

+ XPath + XSLT

XML Basic

§ Assignment One is due next week (Week 7).
All students should submit their assignment on LMS
according to the instructions in the assignment
question sheet AND host their working applications
residing under their web home directory on
ceto.murdoch.edu.au

§ Late submission penalties will apply - refer to the
assignment question sheet

Assignment One

3Learning Objectives

n Understand what an XML Schema is, and how
it compares to a DTD

n Know the format and syntax of XML Schema as
specified by W3C’s XML Schema
Recommendation

4

n In the scope of this unit:
n XML is an important set of Internet technologies for

use in many different areas
n The ability to create new mark-up languages is a

key factor in XML technologies
n XML Schema is an alternative method (to DTD)

used to define the syntax of XML documents
n XML Schema is preferred to the DTD in many

workplaces today, and is therefore a critical
technology to allow us to create new mark-up
languages

Learning Objectives

5XML Schema

n In last week’s lectures, we discussed how
W3C’s XML 1.0 Recommendation specifies:
n The syntax of well-formed XML documents, and
n The DTD to validate XML documents

n XML Schema specifies the structure of XML
documents (just like the DTD), and also has
many different features compared to DTDs
n http://www.w3.org/XML/Schema

6Why Have XML Schema?
n Some people became dissatisfied with DTDs:

n DTDs use a different syntax to define elements
and attributes compared to XML documents, so
they cannot be checked by standard XML
parsers, and they are not easy to transform using
XSLT (more on XSLT later)

n DTDs have very limited datatype capabilities:
n For example, they can not specify that a piece of

data must be a number between 0 and 100

n XML Schemas are:
n Extensible to future additions
n Richer and more powerful than DTDs
n Written in XML
n Support datatype definitions better than DTDs
n Support namespaces

7A Successor to DTD

8Some Features of XML Schema
n XML Schemas provide some advancement

over DTDs:
n They are written in the XML syntax, so all the

tools for XML (like style sheets, parsers and
processors which we will be discussing in future
lectures) can be used on the Schema

n They provide enhanced datatype capabilities:
n Over 44 built-in datatypes in Schemas compared

to 10 built-in datatypes in DTDs
n You can create your own datatypes with XML

Schemas

9

n XML Schemas provide some advancement
over DTDs (cont):
n They provide more powerful content_models,

so we can specify more interesting contents for
XML documents (and thus derive more interesting
mark-up languages)

n They are eXtensible because they are written in
XML!

Some Features of XML Schema

n To define elements and attributes that can
appear in an XML document

n To define which element is the root element
and which elements are child elements

n To define the order of child elements
n To define the number of child elements

10Purpose of an XML Schema

n To define whether an element is an empty
element or can include text

n To define datatypes for elements and
attributes

n To define default and fixed values for
elements and attributes

11Purpose of an XML Schema

Schemas Support DataTypes

n XML Schemas make it easier to:
n Describe allowable document content
n Validate the correctness of data
n Work with data from a database
n Define data facets (restrictions on data)
n Define data patterns (data formats)
n Convert data between different datatypes

12

13The XML Schema Specifications
n W3C’s XML Schema 1.0 specifications comes

in 3 parts:
n Part 0: Primer

n Just a tutorial - not really part of the specifications
n Part 1: Structures

n How to define the basic structure of XML documents
using XML Schema. Eg:"this element contains these
elements, which contains these other elements, etc.."

n Part 2: Datatypes
n How to define datatypes of elements and attributes

used in an XML document. Eg: "this element shall hold
an integer within a range of 0 to 10, etc..."

A Simple XML Document (note.xml)

<?xml version="1.0"?>
<note>
<to>Eric</to>
<from>Ted</from>

<heading>Advice</heading>
<body>Watch out for spiders!</body>

</note>

14

External DTD (note.dtd)
<!ELEMENT note (to ,from ,heading , body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

n The first content_model defines the note
element as having 4 child elements

n The other four content_models define the
child elements to be of the type #PCDATA

15

Schema (note.xsd)
<?xml version="1.0"?> <!-– NOTE: xml declaration -->
<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3schools.com"
targetNamespace="http://www.w3schools.com"
elementFormDefault="qualified">
<xsd:element name="note">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="to" type="xsd:string"/>
<xsd:element name="from" type="xsd:string"/>
<xsd:element name="heading" type="xsd:string"/>
<xsd:element name="body" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

16

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

§ The above line indicates that the elements and data
types used in the schema comply with the correct
syntax rules as specified at the official Schema
namespace: "http://www.w3.org/2001/XMLSchema"

§ It also specifies that the elements and data types that
are verified at that namespace should be prefixed
with xsd
§ Recall xsd means XML Schema Definition

17Schema (note.xsd)

18

xmlns="http://www.w3schools.com"

n The above line indicates that the default namespace
is http://www.w3schools.com.

targetNamespace="http://www.w3schools.com"

n The above line indicates that
"http://www.w3schools.com" is also the target
namespace.

n All elements defined in the schema belong to this
namespace.

Schema (note.xsd)

19

elementFormDefault="qualified">

n The above line indicates that any elements used by
an XML instance document , must be namespace
qualified (i.e., qualified against what was declared in
this schema)

Schema (note.xsd)

20

<?xml version="1.0"?>

<note xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.w3schools.com note.xsd">

<note>

<to>Eric</to>
<from>Ted</from>
<heading>Advice</heading>
<body>Watch out for spiders!</body>

</note>

Referencing Our Schema in
an XML Instance Document

21

<note xmlns="http://www.w3schools.com"

n The above line specifies the default namespace
declaration; its declaration tells the schema-validator
that all the elements used in this XML document are
valid according to the namespace
http://www.w3schools.com

xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

n The above line specifies the XML Schema Instance
namespace; prefixed by xsi. This is needed when
using schemaLocation from that namespace.

Referencing Our Schema in
an XML Instance Document

22

n Once you have the XML Schema Instance namespace
available you can use the schemaLocation attribute

n This attribute has two values, separated by a space
n The 1st value is the target namespace
n The 2nd value is the location of the XML schema to

use with that namespace – in this case, the
note.xsd schema file

xsi:schemaLocation="http://www.w3schools.com note.xsd">

Referencing Our Schema in
an XML Instance Document

23Schema Elements
n Just as in DTDs, the primary purpose of XML

Schema is to declare elements
n Elements are the basic components or

building blocks of XML documents (refer to
lecture on The XML Document again)

n To declare elements in a schema, XML
Schema has an element called “element”

n Note in our example, that the root element is
also the name of the schema file note.xsd:
<xsd:element name="note"> … </xsd:element>

24

n An element has a name and is associated
with a data type

n Elements can be declared as:
n Built-in types

n eg: type="xsd:string"
n Simple types

n <simpleType></simpleType>

n Complex types
n <complexType></complexType>

Schema Elements

25Some Useful Built-in Datatypes

n Primitive types:
n string, boolean, number, float, double, date, time,

gYear, gMonth, gDay, hexBinary, AnyURI, ...

n Derived types:
n normalizedString, integer, short, long,

negativeInteger, positiveInteger,
nonPositiveInteger, ...

26Simple vs Complex Types

n Element with simple types can have
character data content but no child elements
or attributes

n Some examples:
<size>10</size>
<comment>Help me if you can!</comment>
<availableSizes>10 large 2</availableSizes>

27

n Element with complex types can have child
elements (simple or complex) or attributes, as
well as character data content

<size system="AUS-DRESS">10</size>
<comment>Please HELP me?</comment>
<availableSizes>
<size>10</size>
<size>12</size>

</availableSizes>

Simple vs Complex Types

28

Ways of Declaring Elements

<xsd:element name="name" type="type"
minOccurs="int" maxOccurs="int" />

§ minOccurs and maxOccurs specify how many
times this element can exist in the XML document;
they both have default values of 1

<xsd:element name="Title" type="xsd:string" />

<xsd:element name="DateOfBirth"
type="xsd:date" minOccurs="0" />

<xsd:element name="Result" type="xsd:float"
maxOccurs="unbounded"/>

§ Formal declaration using attributes:

§ Examples:

29Ways of Declaring Elements:
Containing Sub-Elements

<xsd:element name="name" minOccurs="int" maxOccurs="int">
<xsd:complexType>

…
</xsd:complexType>

</xsd:element>
<xsd:element name="Staff" minOccurs="1" maxOccurs="50">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="Surname" type="xsd:string" />
<xsd:element name="Age" type="xsd:positiveInterger"

minOccurs="0" />
<xsd:element name="Address" type="xsd:string"

minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

§ Formal declaration using complexType:

Example:

30

§ An XML document based on previous schema:
<Staff>

<Surname>Smith</Surname>
</Staff>
<Staff>

<Surname>Jones</Surname>
<Age>23</Age>

</Staff>
<Staff>

<Surname>Santa Clause</Surname>
<Age>200</Age>
<Address>123, Ice Palace, North Pole.</Address>

</Staff>

Ways of Declaring Elements:
Containing Sub-Elements

31Facets/Restrictions

n Restrictions are used to define acceptable
values for XML elements or attributes

n Restrictions on XML elements are called
facets

n “minInclusive”, “maxInclusive” and “pattern” in
the following examples are example facets

n We extend a base type by changing its facet
values

32Facets: Extending a Simple Type
to Define New Types

<xsd:element name="name" minOccurs="int" maxOccurs="int">
<xsd:simpleType>
<xsd:restriction base="type">
…

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="Age" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="150"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

§ Formal declaration:

Example:

33

<xsd:simpleType name="ISBNType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{1}-\d{5}-\d{3}-\d{1}"/>
<xsd:pattern value="\d{1}-\d{3}-\d{5}-\d{1}"/>
<xsd:pattern value="\d{1}-\d{2}-\d{6}-\d{1}"/>

</xsd:restriction>
</xsd:simpleType>

Declare New Types:
Extending Existing Simple Types

§ Borrowed from http://www.xfront.com/xml-schema.html

§ This defines a new type called "ISBNType",
extended from the "string" type

34

§ 1st Pattern: 1 digit followed by a dash followed by 5
digits followed by another dash followed by 3 digits
followed by another dash followed by 1 more digit

§ 2nd Pattern: 1 digit followed by a dash followed by 3
digits followed by another dash followed by 5 digits
followed by another dash followed by 1 more digit

§ 3rd Pattern: 1 digit followed by a dash followed by 2
digits followed by another dash followed by 6 digits
followed by another dash followed by 1 more digit

Declare New Types:
Extending Existing Simple Types

Restrictions

n Restrictions can be placed on:
n A value
n A set of values
n A series of values
n Whitespace characters
n Length

35

36Ways of Declaring Elements:
Reference to Another Element

<xsd:element ref="name" minOccurs="int"
maxOccurs="int"/>

<xsd:element name="Surname" type="xsd:string" />
<xsd:element name="Staff" minOccurs="1" maxOccurs="50">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Surname"/>
...

</xsd:sequence>
</xsd:complexType>

</xsd:element>

§ Formal declaration:

§ Examples:

37Declaring Attributes
§ We can use the "attribute" element in

Schemas to add attributes to elements in our
new language

<xsd:element name="Student">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Surname" type="xsd:string"/>
...

</xsd:sequence>
<xsd:attribute name="Workrate" type="xsd:string"

use="optional"/>
</xsd:complexType>

</xsd:element>

38

<xsd:attribute name="Workrate" type="xsd:string"
use="optional"/>

...
<xsd:element name="Student">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Surname" type="xsd:string"/>
...

</xsd:sequence>
<xsd:attribute ref="Workrate"/>

</xsd:complexType>
</xsd:element>

Declaring Attributes:
Referencing Attributes

§ We can also make a reference to an
"attribute" element in Schemas

39

<Student workrate="space cadet">
<Surname>Smith</Surname>

</Student>
<Student workrate="high achiever">
<Surname>Jones</Surname>

</Student>
<Student>
<Surname>MacPherson</Surname>

</Student>

Example XML Document Content
from the Previous Schemas

§ An XML document based on our previous
schema:

40Annotations

§ Since an XML Schema is supposed to be self-
describing, there is an “annotation” element
which can be used to annotate the Schema

...
<xsd:annotation>
<xsd:documentation>
This schema is to specify information about the
students within an academic institution.
This Schema was developed by ...

</xsd:documentation>
</xsd:annotation>
...

41

...
<xsd:annotation>
<xsd:documentation>
The following "StudentID" element is extracted from
...

</xsd:documentation>
</xsd:annotation>

<xsd:element name="StudentID">
...

</xsd:element>

Annotations: Another Example

42

n XML Schema elements are associated with, or
identified by, designated namespace/s

n The targetNamespace can be used as a root
element attribute to indicate the namespace
being described by the Schema

Namespaces in Schemas

43

n XML Schemas support Namespaces naturally
n Eg: attaching a namespace to a Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:"http://university.edu.au"
targetNamespace="http://university.edu.au">

...

<?xml version="1.0"?>
<uni:course xmlns:uni="http://university.edu.au"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://university.edu.au/ uni.xsd">

<uni:name>...</uni:name>
<uni:unit>...</uni:unit>

...

uni.xsd

course.xml

Namespaces in Schemas

44Example Schema

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://course.murdoch.edu.au"
xmlns:"http://course.murdoch.edu.au">

<xsd:element name="course">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="name" />
<xsd:element ref="unit" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="unit">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="title" />
<xsd:element ref="lecturer" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="tutor" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Declaring the
“course” root

element

Declaring the
“unit” element

"name" and "unit"
are from the

default
namespace

45

<xsd:element name="lecturer">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="surname" />
<xsd:element ref="othernames" minOccurs="0" maxOccurs="1" />
<xsd:element ref="email" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="tutor">

<xsd:complexType>
<xsd:sequence>

...
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="title" type="xsd:string" />
<xsd:element name="surname" type="xsd:string" />
<xsd:element name="othernames" type="xsd:string" />
<xsd:element name="email" type="xsd:string" />

</xsd:schema>

Declaring the
“lecturer” element

Declaring the reference
elements as simple string
types. Note the references
may be positioned at the
beginning of the Schema
(just after the namespace
declarations) or at the end,
as shown in this example.

Example Schema

Declaring the
“tutor” element

46

Root element
refers to the

XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<course xmlns ="http://course.murdoch.edu.au"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://course.murdoch.edu.au course.xsd">

<name>Bachelor of Science – Mobile and Web Application
Development</name>

<unit>
<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname>Xie</surname>
<othernames>Hong</othernames>

</lecturer>
</unit>
<unit>

<title>ICT283 Data Structures And Abstraction</title>
<lecturer>

<surname>Rai</surname>
<othernames>Shri</othernames>
<email>s.rai@murdoch.edu.au</email>

</lecturer>
</unit>

</course>

Similar to the
XML in the
last lecture

Example XML Document

47XML Schema Validating Parsers

n Like DTDs, there are some parsers that
validate XML documents based on their XML
Schemas

n See examples:
n http://www.w3.org/XML/Schema#Tools

48XML Schema

n The practical lab work involving XML Schema
is at a fairly basic level
n However, you may wish to explore more

advanced usage of XML Schemas
n XML Schema and other methods for defining

document types are very important
technologies, and you will need to be familiar
with them if you do future work in XML

49References

n Online tutorials:
n http://www.w3.org/TR/xmlschema-0/

n Available for download in ZIP file
n http://www.xfront.com/xml-schema.html

n Some example XML Schemas:
n http://www.w3.org/XML/Schema#Usage

XPath:
Navigating The
XML Tree
Lecture 6 (B)

2Learning Objectives

n XML is an important set of Internet technologies
for use in different solutions in different areas

n When processing XML documents, data stored
in the documents will need to be retrieved

n XPath is a standard method for data retrieval
from XML documents

n So there is a need to understand and be able to
use simple XPath expressions

XML as Trees 3

§ An XML document can conceptually be
represented by a tree structure
§ nodes (XML elements), edges (link nodes)
§ root node,

intermediate nodes,
leaf (end) nodes

§ child, parent
§ sibling (ordered),

ancestor, descendant

4

n XPath is an official W3C Recommendation
n http://www.w3.org/TR/xpath

n It is used to express the path to one or a group
of nodes in an XML tree

n As such, it is a language for addressing parts of
an XML document

n It is designed to be used by other XML
technologies such as XSLT

Introduction to XPath

n Though the primary purpose of XPath is to
address parts of an XML document, it also
provides basic facilities for manipulation of
strings, numbers and booleans

n XPath uses a compact, non-XML syntax
n This syntax facilitates the use of XPath within URIs

and XML attribute values

5Introduction to XPath

n XPath operates on the abstract, logical structure
of an XML document, rather than its surface
syntax

n XPath gets its name from its use of a path
notation (similar to URLs and file systems) for
navigating through the hierarchical structure of
an XML document

6Introduction to XPath

7Example XML Document

<?xml version="1.0"?>
<course>

<name>Bachelor of Science – Mobile and Web Application Development </name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
<unit>

<title>ICT283 Data Structures And Abstraction</title>
<lecturer>

<surname>Rai</surname>
<othernames>Shri</othernames>
<email>s.rai@murdoch.edu.au</email>

</lecturer>
</unit>

</course>

8Nodes in our Example Document

n We refer to the document root
as “/” (Note: the document
root is not the root element)

n We refer to the rest of the tree
using the same notation as a
URL or a directory path in a
UNIX file system. Eg:
“/course”
“/course/unit/lecturer”

n These are called location
paths in XSLT

Document Root

<name>

<course>

...

<duration>

<unit>

<title>

<lecturer>

An Analogy:
URL And File Systems

9

-> cd /home/jsmith/letters/
http://ceto.murdoch.edu.au/~jsmith/letters/

10XPath Evalution: Context

n The context of an XPath evaluation consists of:
n The context node (current node in an XML tree)
n Two integers > 0 from evaluating the step:

n context size (number of nodes in node-set)
n context position (index of context node in

node-set)
n A set of variable bindings, and a set of

namespace declarations
n A function library

11Context Node

n At any point in time, XPath will consider one of
the nodes in the tree to be the context node
n i.e., “the node at which it is currently processing”

n XPath expressions are evaluated based on
the current context node

12

n Navigation ‘propagates’ the context
n i.e., evaluation of a step yields a new context

state
n The application determines the initial context
n If the XPath expression starts with ‘/’ then

n The initial context node is the document root (not
the root element)

n The initial position and size are 1

XPath Evalution: Context

13XPath Expressions

n XPath language fulfils the need for a flexible
notation for pointing into and navigating
around XML trees

n It is a basic technology that is widely used
because it allows for:
n Uniqueness and scope in XML Schema
n Pattern matching on a selection in XSLT
n Computations on values in XSLT
n Relations in XLink and XPointer

14Nodes in XPath

n XPath refers to anything in the source tree as
a node
n Source tree is the tree representation of an XML

document
n A node may consist of:

n Elements
n Attributes
n Processing Instructions
n Etc.

Nodes in XML Trees

n Text nodes:
n Leaf nodes that carry the actual contents

n Element nodes:
n Define hierarchical logical groupings of content
n Each has a name

n Attribute nodes:
n Unordered
n Each is associated with an element node, and

has a name and a value

15

n Comment nodes:
n Ignorable meta-information

n Processing instructions:
n Instructions to specific processes
n Each has a target and a value

n Root node:
n Every XML tree has one root node that represents

the entire source tree

16Nodes in XML Trees

Textual Representation 17

§ Text nodes: written as the text they carry
§ Element nodes: start-end tags

§ <blah ...> ... </blah>
§ short-hand notation for empty elements: <blah />

§ Attribute nodes: associated with an element
node
§ name=“value” in start tags

§ Comment nodes: <!-- blah -->

§ Processing instructions: <?target value?>
§ Root nodes: implicit

18Location Paths

n A location path evaluates to a sequence of
nodes in a given XML source tree

n The sequence is sorted in document order
n The sequence will never contain duplicates

19Location Steps

n The location path is built as a sequence of
location steps, separated by a ‘/’

n A location step consists of:
n An axis
n A node test
n Zero or more predicates (path expressions)

axis :: nodetest [Exp1] [Exp2] …

20

n The axis, node test, and predicates may be
viewed as increasingly detailed descriptions of
the sequence of nodes to which the step
should lead

n In the following example, child is the axis,
section is the node test, and the expression
position()<6 is a predicate

Location Steps

21

Example:
child::section[position()<6]

/descendant::cite
/attribute::href

Result: Selects all href attributes in the cite
elements in the first 5 sections of an XML
document

Location Steps

22Evaluating a Location Path

n The location step starts at a context node
and evaluates to a sequence of nodes
n That is, starting from a context node, a location

path returns a node-set
n Each node in the node-set becomes in turn

the context node for evaluating the next step
n The path applies each step in turn

23An Example

A

BB

C

F

C

E

F F

D

E

F E

F

E F

C

24

A

BB

C

F

C

E

F F

D

E

F E

F

E F

C

Context node

Example: Starting At Node A

25

A

BB

C

F

C

E

F F

D

E

F E

F

E F

C

descendant::C
Location Path:

Example: Descendant

26

A

BB

C

F

C

E

F F

D

E

F E

F

E F

C
descendant::C/child::E
Location Path:

Example: Child

27

A

BB

C

F

C

E

F F

D

E

F E

F

E F

C

descendant::C/child::E/child::F

Location Path:

Example: Child

28Axes

n An axis indicates where in the tree (with respect
to the context node) to search for selected
nodes

29

n XPath supports 12 different axes:
§ Child: the children of the context node (not including

attribute nodes)
§ Descendant: the descendants of the context node (not

including attribute nodes)
§ Parent: the unique parent of the context node (empty

sequence if context node is the root node)
§ Ancestor: all ancestors of the context node, from parent to

root node
§ Following-sibling: the right-hand siblings of the context node

(empty sequence for attribute nodes)
§ Preceding-sibling: the left-hand siblings of the context node

(empty sequence for attribute nodes)

Axes

30

n XPath supports 12 different axes:
§ Following: all nodes appearing later in the document than

the context node, excluding descendants
§ Preceding: all nodes appearing earlier in the document

than the context node, excluding ancestors
§ Self: the context node itself
§ Attribute: all attribute nodes of the context node
§ Descendant-or-self: concatenation of self and descendant

sequences
§ Ancestor-or-self: concatenation of self and ancestor

sequences

Axes

31Axis Directions

n Each axis has a direction, with respect to
document ordering

n Forwards means document order:
n Child, descendant, following-sibling,

following, self, descendant-or-self

n Backwards means reverse document order:
n Parent, ancestor, preceding-sibling,

preceding, ancestor-or-self

n Direction determined by associated element:
n Attribute

32The Parent Axis

33The Child Axis

34The Descendant Axis

35The Ancestor Axis

36The Following-Sibling Axis

37The Preceding-Sibling Axis

38The Following Axis: No Descendants

39The Preceding Axis: No Ancestors

40Extra Reading

n The unit readings on My Unit Readings:
Navigating XML Trees with Xpath

n Otherwise, read the “Official Reference” at:
n http://www.w3.org/TR/xpath
n This online reference has more detail than the

condensed view of the unit reader, and so
comprises more valuable information

XSLT:
Transforming
XML Documents
Lecture 6 (C)

2

Learning Objectives

§ XML is an important set of Internet
technologies for use in different solutions in
different areas

§ When processing XML documents, data stored
in the documents will need to be retrieved, and
the information processed into other formats
n XPath is a standard approach for data retrieval

§ XSLT is a standard approach for processing
information into other formats

3

Learning Objectives

§ Understand the role of XSL and XSLT in XML
technologies

§ Understand and be able to write XSLT
stylesheets to transform XML documents into
desired output

4Questions

§ What are XSL and XSLT?
§ How are XML documents rendered in

browsers?
§ How does the XSLT language transform XML

documents?
§ How is XPath used in XSLT?

5The eXtensible Stylesheet Language

n The eXtensible Stylesheet Language (XSL) is
an XML-based language used to create "style
sheets"
n This is analogous to CSS to create style sheets for

HTML and XHTML
n XML software can use XSL to transform an

XML document into another document
n That is, into another XML format, HTML, or any

other text-based format (even RTF and PDF,
although these are quite complex)

What is XSLT?

n eXtensible Stylesheet Language
Transformation (XSLT) transforms XML
documents into XML, HTML, XHTML or plain
text documents

n The style sheet defines how to get from the
input document (source tree) to the output
document (result tree)
n It relies on XPath to identify and find nodes in XML

documents

6

7Why is XSLT Important?
n Extracting appropriate information

n Software and users would probably only require a
small part of the information in one XML document

n And software and users would probably require
information from more than one XML document

n Use across different applications
n We must be able to get the information stored in an

XML document into and out of legacy systems which
do not deal with XML

n Even systems which deal with XML may not use the
same XML mark-up language

Presenting a Business Card 8

An XML
document for
representing
business cards

As displayed in a
browser – not the
desired outcome

<card xmlns="http://businesscard.org">

<name>John Doe</name>

<title>CEO, Widget Inc.</title>

<email>john.doe@widget.inc</email>

<phone>(202) 555-1414</phone>

<logo uri="widget.gif"/>

</card>

Using CSS 9

card { background-color: #cccccc; border: none; width: 300;}

name { display: block; font-size: 20pt; margin-left: 0; }

title { display: block; margin-left: 20pt;}

email { display: block; font-family: monospace; margin-left: 20pt;}

phone { display: block; margin-left: 20pt;}

Result looks more like a
Business card

However:
n Additional structure cannot be introduced
n The information cannot be re-arranged
n Information encoded in attributes cannot be exploited

Using XSL 10

<?xml-stylesheet type="text/xsl" href="businesscard.xsl"?>

<card xmlns="http://businesscard.org">

<name>John Doe</name>

<title>CEO, Widget Inc.</title>

<email>john.doe@widget.inc</email>

<phone>(202) 555-1414</phone>

<logo uri="widget.gif"/>

</card>

11XSLT for Business Cards (1/2)
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:bc="http://businesscard.org"

xmlns="http://www.w3.org/1999/xhtml">

<xsl:template match="bc:card">

<html>

<head>

<title><xsl:value-of select="bc:name/text()"/></title>

</head>

<body bgcolor="#ffffff">

<table border="3">

<tr>

<td>

<xsl:apply-templates select="bc:name"/>

<xsl:apply-templates select="bc:title"/><p />

<tt><xsl:apply-templates select="bc:email"/></tt>

12

XSLT for Business Cards (2/2)

<xsl:if test="bc:phone">

Phone: <xsl:apply-templates select="bc:phone"/>

</xsl:if>

</td>

<td>

<xsl:if test="bc:logo">

</xsl:if>

</td>

</tr>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="bc:name|bc:title|bc:email|bc:phone">

<xsl:value-of select="text()"/>

</xsl:template>

</xsl:stylesheet>

13XSLT and XSL:FO

n There are two complete languages under XSL:
n XSL for Transformation (XSLT) - to transform the

XML document to another document format
n XSL Formatting Objects (XSL:FO) - to format the

result tree for display (on different devices)
n The official W3C Recommendation for both can

be found at:
§ http://www.w3c.org/TR/xslt
§ http://www.w3.org/TR/xsl

XSL Two Processes:
Transformation And Formatting

14

Tree Transformations With XSLT

n Tree transformation constructs the result tree
which is also called the element and attribute
tree

n The objects are primarily in the “formatting
object” namespace

n Tree Transformation is defined in the XSLT
Recommendation

n We will return to look at XSLT in more detail,
after first looking at XSL:FO

15

16Tree Transformations with XSLT

Formatting with XSL:FO

§ Formatting interprets the result tree in its
formatting object tree form to produce the
presentation intended by the designer of the
style sheet

§ The properties associated with an instance of
a formatting object control the formatting of that
object

17

§ The first phase in formatting is to "objectify" the
element and attribute tree obtained via an XSLT
transformation

§ Objectifying the tree basically consists of
turning the elements in the tree into formatting
object nodes, and the attributes into property
specifications

§ The result of this first step is the formatting
object tree

18

Formatting: 1st Phase

19

Formatting: 1st Phase

§ The second phase in formatting is to refine the
formatting object tree to produce the refined
formatting object tree

§ The refinement process handles the mapping
from properties to traits

20Formatting: 2nd Phase

§ Refinement consists of:
1. Shorthand expansion into individual properties
2. Mapping of corresponding properties
3. Determining computed values (may include

expression evaluation)
4. Handling white-space-treatment and linefeed-

treatment property effects
5. Inheritance

21Formatting: 2nd Phase

22Formatting: 2nd Phase

§ The third phase in formatting is the
construction of the area tree

§ The area tree is generated as described in the
semantics of each formatting object

§ The traits applicable to each formatting object
class control how the areas are generated

23Formatting: 3rd Phase

§ Although every formatting property may be
specified on every formatting object, for each
formatting object class only a subset of the
formatting properties are used to determine the
traits for objects of that class

24Formatting: 3rd Phase

25Formatting: 3rd Phase

26XSLT: Pattern Matching
n The XSLT language basically defines a set of

templates
n The templates specify

1. What to look for in the source tree, and
2. What to put in the result tree

n The processing of a style-sheet involves
matching templates against the contents of
XML documents
§ If matches are determined, then the

templates are applied

27

n XSLT is a declarative language not a
procedural language

n Many people encounter problems writing
XSLT because they fail to think in terms of
pattern matching using templates
§ The natural tendency is to think of XSLT

statements as "instructions"

XSLT: Pattern Matching

28

n If you think in terms of "instructions" rather
than "pattern matching using templates", your
style-sheets will not work as you expect them
to

n Please take time to understand this topic
n Read the examples in the Unit readings to

grasp this concept of defining "patterns" rather
than defining "instructions"

XSLT: Pattern Matching

29Associating XML Document
with XSLT Style Sheets

n An XML document can be associated with a
given XSLT style sheet by putting the tag
<?xml-stylesheet … ?> in the Processing
Instructions parts of the XML document

n You would have done something similar to this
with CSS in HTML or XHTML

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl"

href="myxsl.xsl" ?>

30

n This gives the software processing the XML
document (eg: browsers) the option of using
that style sheet to transform the document if it
is deemed appropriate
n However, the software will first have to know how

to deal with “text/xsl” documents

Associating XML Document
with XSLT Style Sheets

31An XSLT Style Sheet
n Since an XSLT style sheet is also an XML

document, it conforms to all the well-formed
rules we have discussed previously
§ It should have the <?xml …?> declaration
§ The root element of the style sheet is

<xsl:stylesheet>

§ <xsl:stylesheet> contains the zero or more
elements <xsl:template> which define the
templates for the transformations

32The XSLT Style Sheet
n So the basic structure of the XSLT style sheet

is formally:
<?xml version="1.0" ?>
<xsl:stylesheet ... >
<xsl:template match=XPath expression >
... Something to do ...

</xsl:template>
<xsl:template match=XPath expression >
... Something different to do ...

</xsl:template>
...

</xsl:stylesheet>

33Example XML Document
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="poetry.xsl"?>
<poetry>

<anthology>
<poem>

<title>The SICK ROSE</title>
<author>William Blake</author>
<stanza>

<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm</line>

</stanza>
<stanza>

<line></line>
<line></line>
<line />
<line />

</stanza>
</poem>

</anthology>
</poetry>

34An XSLT Style Sheet
§ Transforms from XML to HTML or XHTML

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<xsl:for-each select="/poetry/anthology/poem/stanza/line">

<p>
<xsl:value-of select="." />

</p>
</xsl:for-each>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Path to required XML element using XPath

35Matching the Source Tree
Using XPath Expressions

n As mentioned, a major part of XSLT’s job is to
retrieve data from a source tree (the original
XML document)

n For this to happen, there must be some
convenient way of locating components of the
source tree

n As seen in the previous example, we do this
using XPath expressions

36Evaluating the Templates
n What XSLT will do is set the current context

node to the document root, and start finding
the template that matches the current node
n It will then produce the result tree according to

what is specified in the body of the template

n If more than one template matches the
current node, the last one (counting from top
to bottom) will be evaluated

37

n If you want the suitable templates to be applied
to the nodes below the current node (context
node), you must specify the element

<xsl:apply-templates … >

within the body of the template which matches
the current node

Evaluating the Templates

38

<xsl:template match="/">
<!-- Do nothing -->

</xsl:template>

<xsl:template match="line">
The line is: <xsl:value-of select="."/>

</xsl:template>

n Eg. The following will not work:

<xsl:template match="*|/">
<xsl:apply-templates />

</xsl:template>

<xsl:template match="line">
The line is: <xsl:value-of select="."/>

</xsl:template>

n But this will:

This template is
never matched!

Match the document root "/"
or any other node "*" - so
this recursively applies all
templates to EVERY node.

Evaluating the Templates

39

n In summary: at any time while going through
the XML source tree …

<xsl:template match=XPath expression>

... blah blah ...

</xsl:template>

… if the current context node matches this XPath expression …

… then put the content specified here into the result tree. If this
part of the content is a valid xsl tag (eg: <xsl:apply-templates
/>), then the tag is evaluated, and those results are put in the
result tree.

Evaluating the Templates

40Creating the Result Tree
n We have seen the basics of traversing

through the source tree
n Now let's look at how we can get the

required information out of the source tree to
put in the result tree

n The most commonly used element for doing
this is <xsl:value-of>

41<xsl:value-of>

n The common format for this element is:

n This puts the value, as specified by the XPath
expression, into the result tree

n The XPath expression can contain a lot more
than just a location path
n For example: XPath functions

<xsl:value-of select="XPath Expression">

42

n To get information out of the source tree to use
in elements like <xsl:value-of>, we can use
the set of functions available in XPath
§ name() The name of the node
§ text() The #PCDATA of the current node
§ sum() The sum of the numbers given in the

#PCDATA of specified nodes
§ concat() Concatenate two strings

§ Obviously, there are many more functions
available; you should investigate yourself to
learn more

Functions in XPath

Functions in XPath

n Each function in the function library is
specified using a function prototype, which
specifies the return type, the name of the
function, and the type of the arguments

n If an argument type is followed by a question
mark, then the argument is optional;
otherwise, the argument is required

43

44

n XPath has an extensive function library
n There are 106 functions specified
n The default namespace for XPath functions is:

http://www.w3.org/2006/xpath-functions

n There are more functions in the namespace:
http://www.w3.org/2001/XMLSchema

Functions in XPath

45

n Examples:
<xsl:template match="*|/">
The node is: <xsl:value-of select="name()" />
<xsl:apply-templates />

</xsl:template>

<xsl:template match="/">
The sum of all numbers in this document is:
<xsl:value-of select="sum(/spreadsheet/numbers)" />

</xsl:template>

Functions in XPath

46

n XPath functions are also useful for specifying
location paths

n Eg: Finding different lines

<xsl:template match="/course/unit(position()=1)">

<xsl:template match="/course/unit[1]">

<xsl:template match="/course/unit(position()=last)">

n (See Core Function Library at http://www.w3.org/TR/xpath)

Functions in XPath

n Node Set Functions – Eg:
n number last() – returns a number equal to the

context size from the expression
n number position()
n number count(node-set)
n node-set id(object)
n …

n String Functions
n Boolean Functions
n Number Functions

47

Functions in XPath

48Conditional Processing
n When we are traversing the source tree, we

can also perform processing based on
conditions

n We do so using the elements such as:
<xsl:if> and <xsl:choose>

49

n The basic syntax:

<xsl:if test="Boolean expression"> ... </xsl:if>

<xsl:choose>
<xsl:when test="Boolean expression"> ... </xsl:when>
<xsl:when test="Boolean expression"> ... </xsl:when>

...

</xsl:choose>

Conditional Processing

50

n You can also do loops (iterations) using the
element

<xsl:for-each>

n The basic syntax:

<xsl:for-each select="XPath expression">

Iterative Processing: Loops

51

n Eg:

<xsl:template match="unit">
<xsl:for-each select="lecturer">

Another lecturer
</xsl:for-each>

</xsl:template>

Iterative Processing: Loops

52Built-in Templates
n By default, the following templates will already exist:

n Some syntax abbreviations are listed in
XPathAbbreviationSyntax.txt (on LMS)

<xsl:template match="*|/">
<xsl:apply-templates />

</xsl:template>

<xsl:template match="text()|@*">
<xsl:value-of select="." />

</xsl:template>

53

§ So even if you have no templates in your style
sheet, the #PCDATA in every node of your
document will be put in the result tree
§ If a node doesn’t have #PCDATA, a new-line

character will be put in the result tree

§ If you don't define any templates to override the
default behaviours, they will be invoked. This
can sometimes cause confusion among
students because their templates are producing
results they never defined

Built-in Templates

54Extra Reading
n An introduction to eXtensible Style Sheets at:

“http://www.xml.com/pub/a/1999/01/walsh1.html?page=1”

n The unit readings on My Unit Readings: Navigating
XML Trees with Xpath and Transforming XML
Documents with XSLT

n Otherwise, read the “Official References” at
n http://www.w3.org/TR/xslt
n http://www.w3.org/TR/xpath

n These have far more detail than the condensed view
of the unit readers, and so comprise more valuable
information

